
Project MAERA

Map Explorer: A Distributed Robotics

Application

Akshay Choche and Muthukumaran Chandrasekaran

Department of Computer Science, University of Georgia, Athens, GA 30602
{achoche, mkran}@uga.edu

Abstract. Distributed systems find applications in various fields such
as robotics, network security etc. In the field of robotics, we can consider
a team of robots working towards a common goal to be a distributed
system. A team of robots mapping an area can potentially combine their
information to explore a given map more efficiently than a single robot
alone. We describe a simple, yet effective approach for distributed map
exploration. We test the algorithm on a simulated 2D environment. We
show the elegance with which the algorithm is able to localize the position
of the explorer robots and how processing tasks are assigned dynamically
on the fly.

1 Motivation

For applications such as search and rescue operations, security monitoring, ur-
ban reconnaissance and even house cleaning, systems of multiple robots must be
able to cooperatively explore and map an environment. For example, consider
a hypothetic train-wreck situation. To begin with, human intervention could be
dangerous because of the potential risk of safety as the crash is bound to have
created unstable structures with a possible risk of collapse. This calls for un-
manned exploration of the crash site before human teams can actually carryout
their search and rescue operation. A team of surveillance robots could be de-
ployed at multiple entry locations to fetch audio and visual information which
can then be used by human rescue teams to plan their operation beforehand.
Also, these surveillance robots, often small in size, can navigate through regions
where human intervention is physically impossible. Their task is to jointly explore
the entire map and quickly with minimal redundancy in the areas explored. In
this project, we will simulate a team of robots faced with the task of coordinated
exploration. Such problems have been previously studied and researchers claim
that autonomous exploration and map merging algorithms to be increasingly
robust on single robots. But in order to create a map quickly, multiple robots
have to be used and each robot can be allowed to explore only a portion of the
environment and the robots’ individual partial maps will be then combined to
form the complete maps. Hence, researchers are faced with their next challenge;
extending these techniques to a team of robots. Some difficult issues, including



limited communication between robots, no assumptions about start locations
of the robots, and dynamic assignment of processing tasks, hamper progress in
this field of research. In this paper, we will address some of these issues while
identifying a distributed approach to the coordinated exploration problem.

2 Related Work

The ability to build a map of an unknown environment is one of the fundamen-
tal enabling capabilities for mobile robots. Having an accurate map enables the
robot to perform certain tasks like navigation, localization and so forth much
faster and more accurately. In the past years a significant amount of research
has been devoted to this subject. Previous implementations of mapping and ex-
ploration have been done robustly on individual robots using laser range finders
and visual information [Yamauchi1998] [Thrun, Burgard, and Fox2000]. But in
order to bulid a map quickly and efficiently, use of multiple robots are proven
to be more beneficial where each robot is allowed to explore only a portion of
the map and their individual efforts are combined to complete the exploration
in reduced time. However, coordinating multiple robots to efficiently explore a
map is a known hard problem. We seek inspiration from Stefano Carpin et al’s
work on map merging [Carpin, Birk, and Jucikas2005]. Their work mainly deals
with fusing two or more partial maps without a common reference frame into
one large global map. In their paper, they address map merging using motion
planning algorithms. They perform operations such as translation and rotation
on partial maps to determine common reference points among these maps until
similar regions overlap. We use similar operations on partial maps generated by
the robots to localize their position relative to the blueprint or the floor plan of
the map being explored. We hope to extend our algorithm to tackle scenarios
where this blueprint is not a part of the input and improve upon the efficiency
of this early work. A popular researched problem in this context is called SLAM
(Simultaneous Localization And Mapping), where the robot is required to build
a map and localize itself at the same time. Nagesh Adluru et al present a novel
present a novel and simple solution to the problem of map merging by reducing
it to the problem of SLAM of a single virtual robot [Adluru et al.2008]. The
individual local maps and their shape information would constitute the sen-
sor information for this virtual robot. This approach allowed them to adapt the
framework of Rao-Blackwellized particle filtering used in SLAM of a single robot
for the problem of map merging.

3 Assumptions

We had to simplify our algorithm by making some assumptions that decrease
the generality of the approach due to time and funding constraints. The main
assumptions are as follows:

1. We assumed that the blueprints or floor plans of the building or map that
is being explored to be given to us. This assumption, while simplifying the



problem a great deal, is reasonable, as search and rescue teams, more often
than not, are provided with the blueprints on the scene. They can quickly
upload these plans on to their robots in order for them to have a better
understanding of the extent of the map.

2. We have a master-slave architecture for the robots (with one master comman-
der robot and multiple slave explorer robots). The master robot is assumed
to be located at a remote location such as the command post through which
all information will be routed. It is also assumed to be fail-proof and com-
putationally more powerful. The slave robots are the team of robots that
are deployed on the field faced with the task of coordinated exploration.
They could be subject to failure and have their navigation algorithms pre-
programmed into them.

3. We assumed that perfect noise-free communication takes place between the
master and the slave robots. Slave-to-Slave communication is not allowed at
the moment. We consider communication in the form of a shared resource
accessible by all the robots.

4 A Distributed Approach

We propose a distributed approach to the coordinated exploration problem. Our
approach constitutes a master-slave architecture which is a model of intermittent
communication where one device (the master) has unidirectional control over one
or more other devices (slaves). The slave robots, called the explorer robots, are
capable of mapping the environment on their own by individually exploring areas
of the map assigned to them and collecting information to be communicated back
to the master robot. The partial map explored by each of these slave robots is
overlaid with the corresponding information that has to be communicated back;
they can share information and coordinate their exploration activities with only
the master. The master is set up at the command center. It lies at the other
end of all the information communicated by the slaves. It is responsible for
processing these different partial maps received from multiple slaves, localizing
their position in the map and ensuring that all regions of the map have been
explored for vital information while minimizing redundancies in the information
being communicated and increasing the speed with which it is done.

5 Simulated Environment

We experimented our approach on a simulated 2-D grid environment. We con-
sider an n X m grid where each cell block represents a unit of area explored by
the slave robot. An example of a 10 X 10 grid is shown in Figure 1. Landmarks
or walls are represented by the shaded region and they are assumed to be in-
accessible. In other words, if movement is attempted into one of these regions,
the slave robots will end up back in the same space. Empty spaces are accessi-
ble and are represented by an empty region. The slave robots flag these empty
regions with their signature as they explore/visit them and move on. For testing



purposes, we assume there are 2 slave robots: A and B, whose signatures are A

and B respectively. This algorithm can be extended to a grid of any size and
any number of slave robots. The signature -1 is assigned to don’t cares.

Fig. 1. An example 10 X 10 grid environment showing walls and accessible empty
regions including randomly initialized start positions of slaves A and B and their
respective orientations

6 Approach

Our master-slave architecture is designed as a multi-threaded client server system
where a new thread is created for each slave robot which act as clients and
the master is the server. Communication or information sharing happens only
between the server and clients and not among clients themselves. The master
(server) keeps listening on dedicated ports for each slave (client) and when the
client is ready to transmit, the server is ready to receive the information and
executes the task assignment algorithm. There are basically three steps involved:
the pre-localization step, localization step and the post-localization step. Before
we get into the pre-localization step, we will briefly describe the slave robot’s
navigation algorithm.

The slave robots are initially positioned at any random location in the map.
So, as far as the master is concerned, their positions are initially unknown until



they have been localized. The slave robots maintain their partial map as they
explore it and once a stopping criteria is reached, they share their respective
partial maps with the master which then attempts to localize each of their posi-
tions. In this section we will discuss how a slave negotiates its way through the
map until its time for it to communicate its findings and position relative to its
starting point to the master.

The slave robots are allowed to move in four possible directions - North(N),
South(S), East(E) and West(W). The robot keeps track of the path traversed
by storing the coordinates of the cell blocks it has visited relative to its initial
position and orientation. For the example shown in Figure 1, the slave A assumes
its initial position to be (0,0). By moving to its north, it would have moved one
block below where it is currently positioned in the blueprint. Each slave robot
is preprogrammed to implement the following navigation algorithm. It is to be
noted that this algorithm is not necessarily the most efficient.

6.1 Navigation Algorithm

The explorer robots function in two modes - the wall detection mode and move-
ment mode. When the robot is in the wall detection mode, from its current
location, it looks around and senses the presence of walls around it and flags
each of them as a wall. It then computes the possible moves left based on this
finding. First, the robot is initialized with equal probabilities to move in any di-
rection. Once the available moves are computed, these directional probabilities
are adjusted to only include possible moves. For example, in Figure 1, robot A
detects walls to its south, west, and east. So it assigns a probability of one to go
north as all other moves are not possible. When the robot is in the movement
mode, it moves in one the directions using the directional probabilities as the
likelihood. The robot keeps track of the relative coordinates of the grid traversed
as well as the ones not traversed as it moves. The robot also maintains the count
of the walls detected and the steps taken and once this count reaches a specified
threshold, it communicates all the available information gathered to the master
robot.

If the robot, in its current path, is at a position where there are no further
moves possible because the cell block has already been explored or is a wall,
it backtracks to the most recent untraversed block it had previously missed.
The trajectory of the robot can be thought of as tree where the cell blocks are
nodes and the possible moves are edges. For the example in Figure 1, robot
A’s trajectory tree including the directional probabilities would look like the one
shown in Figure 2. The robot at (-2,2) has no where to go except backtrack to
the most recent untraveled path shown in green to (-1,3). This minimizes overlap
or redundancies in the exploration by exploiting its own trajectory first(using
backtracking). In the case where all cell blocks in its own trajectory have been
explored, the algorithm relaxes the overlap criteria and allow it move into the
explored territory of the other robot.



Fig. 2. Trajectory tree of robot A showing directional probailities

6.2 Pre-Localization

In this step, the partial map explored by the slave robot is communicated to
the master. The master pre-processes this partial map for all possible initial
orientations of the robot by rotating it by 90, 180, and 270 degrees. it then
tries to superimpose each of these four versions of the partial map on top of the
blueprint to check for matches. It is possible that this process could result in
multiple matches. This implies that the master is still uncertain as to what the
inital position of the robot could be. The Figure 3 shows a possible scenario.

6.3 Localization

In this step, since the master is still uncertain about the absolute position of its
slaves, it instructs them to continue their navigation but this time communicate
the partial map back each step of the way until the master is able to clear
the ambiguity. This may be extremely inefficient in maps that are sparse but
very effective in relatively populated maps. Let us show how this works using
the running example in Figure 3. As it can be noticed, there are two possible
matches returned. So the master instructs the slave to execute one more step
(say the robot ends up moving west) and its relative position is now (-2,2).
The new partial map is now communicated back to the master which in turn
finds only one suitable match and is shown in Figure 4. This allows the master
to trace the steps back to the robots initial position and thereby localizing its
accurate absolute position in the blueprint. Now the master is in a position to
assign more informed tasks about what the slaves should do next.



Fig. 3. Pre-Localization Step: Two possible matches found when the different versions
of partial map is superimposed over the blueprint

Fig. 4. Localization Step: Only one possible match found when the new partial map
after one more step (going west) is superimposed over the blueprint



6.4 Post-Localization

The master now has accurately computed the absolute position of the slave robot
and is ready to assign its next task. In this step, the master instructs the slave
robots to continue exploration as per their navigation algorithm except with a
newly computed set of direction probabilities. This computation weighs in on
the location of unexplored areas, current absolute location of the slaves and the
trajectory so far. Higher weightage is given to the directions that lead the slave
to unexplored regions. Penalties are awarded for overlaps thereby decreasing the
probability assignment to already explored regions by other robots.

7 Future Work

Currently, in the event of a faulty slave failing to communicate, since the inter-
mittently updated blueprint is the only thing shared, the master will continue
to not reflect areas explored by the faulty slave in the blueprint, thereby forcing
the remaining slaves to reexplore them. As per our assumption, the master is
fail-proof. To make the situation more realistic, we could allow robots to ’die’
due to a sensor malfunction or a dying battery or communication failure causing
robots to lose contact with one another or a structural collapse on the robot.
Thus, there has to be a fail-safe backup algorithm for reassigning roles in the
event of robots (master/slave) dying and dealing with information loss. As you
may have noticed, our approach is centralized and depends on the master for
communication and future task assignment. This is a single point of failure and if
the master crashes the whole operation crashes. However, having a pre-assigned
remote master helped reduce the complexity of the problem by not having to
consider an election algorithm to elect a new master in the event of a master dy-
ing or a fail-safe algorithm to handle information loss due to such an event. Also,
having a remote master meant that the computational capability of the slaves
could be restricted to fulfilling their specific task alone and the master could be
the only superior (and in turn, more expensive) system in terms of computa-
tional power in order to carry out the map exploration algorithm. However, this
could definitely be an extension of this work.

We could also investigate scenarios where the blueprints of the map is not
given to us. This would indeed make the problem much more complex because
the partial maps will not have a common referrence point by default and that
needs to be computed. There is also the possibility of certain partial maps not
having any overlap in which case the master has to maintain multiple maps and
continuously keep checking for the possibility of overlap.

This project lacks in experimentation and testing due to lack of time. As-
suming there is a cost for communication, we would like to study the trade-off
between the efficiency of the map exploration algorithm and the speed with
which it is carried out. We would like to analyze this by varying the number of
steps ’k’ taken before communication and study the trade-off parameter. Intu-
itively, higher the value of ’k’, the larger the area covered within one exploration
and feedback step, the greater the possibility of overlap in the areas explored by



different robots, the lesser the efficiency of the algorithm. Alternatively, lower
the value of ’k’, the lesser the area covered before the robot reports the partial
map to the master, lesser the chance of overlap in the area covered between
the robots, but larger the cost incurred for communication. It would also be
interesting to study scenarios where the communication is noisy.

We would also like to optimize the number of robots needed to efficiently car-
ryout the map-exploration algorithm assuming there is a cost for including each
robot in the team and also compare the performance of our algorithm with ex-
isting techniques in terms of the costs, time taken, accuracy of the reconstructed
map, and the efficiency of the algorithm.

We would also like to implement this on real miniature robots in real envi-
ronments.

8 Conclusion

Project Maera is a distributed robotic map exploration project which uses image
processing techniques such as rotation and translation to localize robots in the
blue prints provided. We presented a simple yet effective localization approach.
We implemented the algorithm using a multi-threaded client server architecture
and verified that the algorithm works. We attempt to minimizes map overlap by
allowing the slave robots to explore its own trajectory first using backtracking
and if needed move into the territory of other robot. Due to time and money
constraints, we have a huge list of things to improve our approach that are still
pending. However, this project could be a good starting point for bigger and
better things to come.

References

[Adluru et al.2008] Adluru, N.; Latecki, L.; Sobel, M.; and Lakaemper, R. 2008. Merg-
ing maps of multiple robots. In 19th International Conference on Pattern Recognition,
1–4.

[Carpin, Birk, and Jucikas2005] Carpin, S.; Birk, A.; and Jucikas, V. 2005. On map
merging. In International Journal of Robotics and Autonomous Systems, 1–14.

[Thrun, Burgard, and Fox2000] Thrun, S.; Burgard, W.; and Fox, D. 2000. A real-
time algorithm for mobile robot mapping with applications to multi-robot and 3D
mapping. In ICRA.

[Yamauchi1998] Yamauchi, B. 1998. Frontier-based exploration using multiple robots.
In Proceedings of the Second International Conference on Autonomous Agents.


