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Abstract—Interactive dynamic influence diagrams (I-DID) representative models from each cluster. Intuitively,uester
are graphical models for sequential decision making in uncer-  contains models that are likely to be behaviorally equivale
tain settings shared by other agents. Algorithms for solving 54 hence may be replaced by a subset of representatives

I-DIDs face the challenge of an exponentially growing space of - - - . . .
candidate models ascribed to other agents, over time. Pruning without significant loss in the optimality of the decision

behaviorally equivalent models is one way toward minimizing ~Maker. However, this approach often retains more models
the model set. We seek to further reduce the complexity by ad- than needed. Doshi and Zeng [6] further minimize the model
ditionally pruning models that are approximately subjectively  set. At each time step, only those models are updated which
equivalent. Toward this, we define subjective equivalence in . result in predictive behaviors that are distinct from

terms of the distribution over the subject agent's future action . S
observation paths, and introduce the notion of e-subjective others in the updated model space. The initial set of models

equivalence. We present a new approximation technique that are solved and merged to obtain a policy graph, which
reduces the candidate model space by removing models that assists in discriminating between model updates. Pynadath

are e-subjectively equivalent with representative ones. and Marsella [7] proposed utility equivalence to additibna
cluster models; its applicability in the context of I-DIDs i
|. INTRODUCTION not straight forward.

Interactive dynamic influence diagrams (I-DID) [1] are In this paper, we aim to reduce the model space by
recognized graphical models for sequential decision ngakinpruning models that are approximately subjectively equiv-
in uncertain multiagent settings. 1-DIDs concisely reprgs alent. Toward this objective, we introduce the concept-of
the problem of how an agent should act in an uncertairsubjective equivalencamong candidate models. We define
environment shared with others who may act in sophisticatedubjective equivalence as the class of models of the other
ways. They generalize DIDs [2] to multiagent settings, andagents that induce an identical distribution over the stibje
provide a way to model and exploit the embedded structuragent’s future action-observation paths in the interactio
often present in real-world decision-making situationst F We relate subjective equivalence to the previous concept
comparisons with related graphical models, MAIDs [3] andof behavioral equivalence. Subsequently, models thatciedu
NIDs [4], see [1]. distributions over the paths, which are no more than 0

I-DIDs acutely suffer from both the curses of dimen- apart are termed as beingsubjectively equivalent. Intu-
sionality and history [5]. This is because the state spacdively, this results in a lesser number of equivalencesgas
in 1-DIDs includes the models of other agents as well.in the partition than behavioral equivalence. If we pick a
These models encompass the agents’ beliefs, action argingle representative model from each class, we typically
sensory capabilities, and preferences, and may themselvesd up with no more models than the number of subjectively
be formalized as I-DIDs. The nesting is terminated at thedistinct ones, which need be solved. This improves on
0" level where the other agents are modeled using DIDsapproaches that utilize exact behavioral equivalence.

As the agents act, observe, and update beliefs, I-DIDs must We begin by selecting a model at random and grouping
track the evolution of the models over time. Thus, I-DIDs togethere-subjectively equivalent models with it. We repeat
not only suffer from the curse of history that afflicts the this procedure for the remaining models until all models
modeling agent, but more so from that exhibited by thehave been grouped. The retained model set consists of the
modeled agents. The exponential growth in the number ofepresentative model from each equivalence class. In the
models over time further contributes to the state space. worst case { = 0), our approach identifies exact subjective

Previous approaches for solving I-DIDs [1], [6] focus on equivalence and the model set consists of all the subjdgtive
limiting the number of candidate models of other agentsunique models. Our novel approach provides a unique oppor-
Using the insight that beliefs that are spatially close aregunity to bound the error in optimality of the subject agent.
likely to be behaviorally equivalen{7], [8], Doshi, Zeng Furthermore, we experimentally evaluate our approach on
and Chen [1] cluster the models of other agents and sele¢tDIDs formulated for benchmark problem domains and



show significant qualitative improvement. However, this
improvement is tempered by increased time complexity of
ascertaining:-subjective equivalence of models.

Il. BACKGROUND: INTERACTIVE DID

We outline interactive influence diagrams (I-1Ds) for two-
agent interactions followed by their extensions to dynamic
settings, I-DIDs [1].

A. Syntax

In addition to the usual nodes, I-IDs include a new type Figure 2. A generic two time-slice level I-DID for agent:.
of node called themodel node(hexagonal nodej;;_1,
in Fig. 1(a)). We note that the probability distribution over ] o )
the chance nodes, and the model node together representdiPdate linkshown as a dotted arrow in Fig. 2. We briefly
agenti’s belief over itsinteractive state spacdn addition ~ €Xplain the semantics of the model update. The update of
to the model node, I-IDs differ from IDs by having a chance
node, A;, that represents the distribution over the other
agent’s actions, and a dashed link, calledddicy link.

Figure 3. The semantics of the model update link. Notice the

o (b) growth in the number of models at+ 1 shown in bold.
a,

Figure 1. (a) A generic levell > 0 I-ID for agent; situated with  the model node over time involves two steps: First, given the
one other agent. (b) Representing the model node and policy link models at time, we identify the updated set of models that
using chance nodes and dependencies. reside in the model node at timhe-1. Because the agents act
and receive observations, their models are updated totreflec
Their changed beliefs. Since the set of optimal actions for
a model could include all the actions, and the agent may
receive any one of(;| possible observations, the updated

The model node contains as its values the alternativ
computational models ascribed byto the other agent. We
denote the set of these models b¢;;_;. A model in the
model node may itself be an I-ID or ID, and the recursion . . p
terminates when a model is an ID or a simple probabilityset at time stept + 1 will have up to [ M5, ][ 4[]

1 7 ie 1 i iafpt
distribution over the actions. Formally, we denote a modefnodels. The CPT offod[M;77,] is 1 if the beliefb;,;,
5 in the modelm!, , using the action’ and observation

of j as,mj;—1 = (bji-1,0;), whereb;;_; is the level ) ; :
, - =15 ; +1 P+l t+1 - n it
I — 1 belief, andd; is the agentsrame encompassing the ¢; uPdates td;;_, in a modelm;;_,; otherwise it is 0.

action, observation, and utility nodes. We observe that the€cond, we compute the new distribution over the updated
model node and the dashed policy link that connects it tgn°dels, given the original distribution and the probapilit

the chance noded;, could be represented as shown in of the_ agent performing the action and receiving the ob-
Fig. 1(b). The decision node of each levéel- 1 I-ID is servation that led to the updatgd model. The (_jotted model
transformed into a chance node. SpecificallyDiPT is the ~ UPdate linkin the I-DID may be implemented using standard
set of optimal actions obtained by solving the I-ID (or ID), dependency links and chance nodes (Fig. 3) transforming it

then Pr(a; € A}) = 57 if a; € OPT, 0 otherwise. The into a flat DID.

conditional probability table (CPT) of the chance node,

is amultiplexer that assumes the distribution of each of theB' Behavioral Equivalence and Solution

action nodesA},A?) depending on the value @ od[M;]. Although the space of possible models is very large, not
The distribution ovetM od[M;] is i's belief overj’s models  all models need to be considered in the model node. Models
given the state. that arebehaviorally equivalenf7], [8] — whose behavioral

I-DIDs extend I-IDs to allow sequential decision making predictions for the agent are identical — could be pruned and
over several time steps (see Fig. 2). In addition to the moded single representative model considered. This is because
nodes and the dashed policy link, I-DIDs include thedel the solution of the subject agent’s I-DID is affected by the



predicted behavior of the other agent only; thus we need not

distinguish between behaviorally equivalent models.

The solution of an I-DID (and I-ID) proceeds in a bottom-
up manner, and is implemented recursively. We start by
solving the level 0 models, which may be traditional DIDs.
Their solutions provide probability distributions whiclea
entered in the corresponding action nodes found in the mod
node of the level 1 I-DID. The solution method uses the
standard look-ahead technique, projecting the agentisract
and observation sequences forward from the current beli
state, and finding the possible beliefs thabuld have in the
next time step. Because ageémtas a belief ovelj’'s models
as well, the look-ahead includes finding out the possible
models thatj could have in the future. This is done by
combining j’s actions obtained by solving its models with
its possible observations. The updated sej’'sfmodels is
minimized by excluding the behaviorally equivalent models
Beliefs over these updated set of candidate models arg
calculated using the standard inference methods throug?n
the dependency links between the model nodes (Fig. 3),
The algorithm in Fig. 4 may be realized using the standar

implementations of DIDs.

I-DID E xAcT (level I > 1 I-DID or level 0 DID, T))
Expansion Phase
1.For¢ from 1to T —1 do

2.

3
4.

© oo~

11.
12.

13.

14.

If 1> 1 then
Minimize M},
For eachmj in M}, , do
Recursively call algorithm with the— 1 I-DID
(or DID) that represents:} and the horizonT — ¢
Map the decision node of the solved I-DID
(or DID), OPT(m), to the chance nodé’
MY, « BehavioralEq(M}, ;)
PopulateM;j}1
For eacha; in OPT(m!) do
For eacho; in O; (part of m}) do
Updatej's belief, bi*! — SE(b, a;,0;)
m‘*! «— New I-DID (or DID) with %"
as belief

ML, & iy

Add the model noddV[J’?jjl, and the model
update link between/f,_, and M! 7!,
Add the chance, decision and utility nodes fét
time slice and the dependency links between them

Establish the CPTs for each chance node and utility

Solution Phase
15.1f [ > 1 then

16. Represent the model nodes and the model update lin
as in Fig. 3 to obtain the DID

17. Apply the standard look-ahead and backup method to

solve the expanded DID

Figure 4. Algorithm for exactly solving a levél> 1 I-DID or level O

DID expanded ovefl" time steps.

IIl. SUBJECTIVE EQUIVALENCE

We assume that the models ¢fhave identical frames
and differ only in their beliefs. Recall that models
mji—1,Mj -1 € Mj,—1 are behaviorally equivalent if and
only if OPT(mj;—1) = OPT(1n;;-1), where OPT()

enotes the solution of the model that forms the argu-

ent [8]. If the model is a DID or an I-DID, its solution is
a policy tree. While a pair of policy trees may be checked
effor equality, disparate policy trees do not directly permit
intuitive behavioral comparisons. This makes it difficudt t
define a measure of approximate behavioral equivalence,
motivating further investigations.
We note that subsets of models may impact the decision
making of the modeling agent similarly, thereby motivating
interest in grouping such models together. We utilize this
insight toward introducing the new concept siibjective
equivalence(SE}. Let h = {a},0!"'}7_, be the action-
bservation path for the modeling age’,mvhereoiTJrl is null
or a T horizon problem. Ifat € A; ando!™ € Q;, where
. and §); areqd’s action and observation sets respectively,
hen the set of all paths igf = ¥ (A; x (), and the
set of action-observation histories up to timds H! =
H’fl(Al- x ;). The set of future action-observation paths
is, Hr_; = I} (A; x §;), wheret is the current time step.

We observe that agent's model together with agent
1's perfect knowledge of its own model and its action-
observation history induces a predictive distribution rove
i's future action-observation paths. This distributionysla
a critical role in our approach and we denote it as,
Pr(Hy—¢|h*,mip,mb, ), whereh! € H*, m;, isi's level
! I-DID and m}, , Is the levell — 1 model of j in the
model node at time. For the sake of brevity, we rewrite
the distribution term asPr(Hy—¢|mj ;, m’,_,), wherem}

isi’s horizonT —t 1-DID with its initial belief updated given
the actions and observations ih. We define SE below:
Definition 1 (Subjective EquivalenceJwo models of
agentj, m}, , andm!, ,, are subjectively equivalent if and
only if Pr(Hr_i|mj,,mj, ) = Pr(Hp—| mj,,m5, ),
where Hr_, and m;l are as defined previously.
In other words, SE models induce an identical distribution
over agent’s future action-observation paths. This reflects
the fact that such models impa&$ behavior similarly and
could be grouped.
node Lethr_; be some future action-observation path of agent
i, hr_; € Hr_;. In Proposition 1, we provide a recursive
way to arrive at the probabilityPr(hp_¢|mj ;,m}, ). Of
course, the probabilities over all possible paths sum to 1.

Proposition 1: Pr(hr—:|m},;, m’, 1)=Pr(al,oi""|m},,

mb, 1) Za;m;H Pr(hr—i—1 |mﬁ17 mﬁil)Pr(aﬁ, 02“ laf, mj

>~

mé‘,z—l)

1We will use SE as an acronym for both, subjectively equivalent
(adjective form) and subjective equivalence (noun form). Appro-
priate usage will be self-evident.



where IV. €-SUBJECTIVE EQUIVALENCE
Our definition of SE formalizes the intuition that SE

+1 _ . . . . . .
Pr(ai, o7 fmi ,myi ) = Pr(ai|OPT(mi,)) 3, Pr(aj] models impact the subject agent identically. While rigorous
OPT(mé',l—l))Zf:st;rl tO:l(Sttl,af,aﬁ-,OZ“) it has the advantage that it permits us to measure the
X2 em, Ti(s, aiyaj,877) biy(s,my) degree to which models are SE, allowing the introduction

@) of approximate SE

Pr(al,of* |t mt . m! 1) = Pr(aj|OPT(m},_1)) Y, A Definition
0;(s' 1,a§,a§,o?+1)zsmj Ti(s,ai, a%, s" bl (s, my) We introduce the notion oé-subjective equivalencec{
(2 SE) and define it as follows:
Definition 2 €-SE): Given ¢ > 0, two models,m?l_1

In Eq. 1, 05(s'*!,al,al,0/™") is i's observation function ands!, , aree-SE if the divergence between the distribu-
contained in the CPT of the nod€!*!, in the I-DID,  tions Pr(Hr_¢|m},,m}, ) andPr(Hy_|m}, m!, |)is
Ti(s, al, a, s"*') is i's transition function contained in the no more thare.

CPT of the nodeS'+!, Pr(a!|OPT(m!,)) is obtained by ~ Here, the distributions oveis future paths are computed
solving agenti's I-DID, Pr(a}|OPT(m!,_,)) is obtained as shown in Proposition 1. While multiple ways to measure
by solving;j’s model and appears in the CPT.4f. In Eq. 2, the divergence between distributions exist, we utilize the
0;(s'*1,al, at,0'™") is j's observation function contained Well-known Kullback-Leibler (KL) divergence [11] in its
in the CPT of the chance nod@jﬂ, given j’s model ~ Symmetric form, in part because its mathematlcal_proaeme
is m’,_,. Proposition 1 may be derived recursively over aré Well studied. Consequently, the models @£ if,
future pa_tths and_by noting th.ais level - 1 actions and Dy (Pr(Hr_4|
observations are independentisfobservations. We provide

a concise proof in the Appendix. where Dy (p||p’) denotes the symmetric KL divergence
Now that we have a way of computing the distribution Petween distributionsy andp’, and is calculated as:

over the future paths, we may relate Definition 1 to our L1 p(k) ) v (k)

previous understanding of behaviorally equivalent madels ~ Dxr(pllp’) = 5 > <P(k)109p,(k) + p'(k)log 0 >

¢

Mg s ) [[Pr(Hp—i|mi i, 1)) < €

Proposition 2: If OPT(m!, ;) = OPT (i, ,), then g
Pr(HT,t|m§l,m§.l_1) = Pr(Hp_¢m!,, m;l_l), where If ¢ = 0, e-SE collapses into exact SE. Sets of models
mt,_, and m; ,_, arej's models. ’ ’ exhibiting e-SE for some non-zero but smalldo not differ

Proof sketch: The proof is reducible to showing the significantly in how they impact agefis decision making.
above for some individual path,_; € Hp_.
GivenOPT(m', ,) = OPT (i}, ,), we may write,
Pr(at|OPT(m!, ,)) = Pr(aj|OPT (1}, ,)) for all at.
Because all other terms in Egs. 1 and 2 are identical
it follows that Pr(hr—¢|mf,,m%, ;) must be same as
Pr(hy—y | mty, i, ).

B. Approach

We proceed by picking a model gfat random,mﬁll,

from the model node in the first time step, which we call
the representativeAll other models in the model node that
aree-SE with m;:_jil are grouped together. Of the remaining
_ models, another representative is picked at random and the
Consequently, the set of SE models includes those that afgeyious procedure is repeated. The procedure terminates

behaviorally equivalentlt further includes models that in- |, nen no more models remain to be grouped. We illustrate
duce identical distributions over ageirg action-observation 4 process in Fig. 5. We point out that fer> 0, in

paths, but these models could be behaviorally distinct OV€{ieneral, more models will likely be grouped together than

those paths that have zero probability. Thus, these lattgf e considered exact SE. This results in a fewer number
models may not be behaviorally equivalent. Doshi and Gmyy¢ cjasses in the partition.

trasiewicz [10] call these models as (strictly) observaity We first observe that the outcome is indeed a partition
equivalent. Therefore, the converse of Prop. 2 is not true. ot the model set intoe-SE classes. This is because we
A simple method for computing the distribution over the continue to pick representative models and build classes
paths given models afandj is to replace agents decision  until no model remains ungrouped. There is no overlap
nodes in the I-DID with chance nodes so tifat(a; € A})  between classes since new ones emerge only from the
= m and remove the utility nodes, thereby trans-models that did not get previously grouped. We observe
forming the I-DID into a dynamic Bayesian network (DBN). that the representatives of different classescagebjectively
The desired distribution is then the marginal over the chancdistinct, otherwise they would have been grouped together.
nodes that represerits actions and observations witfis ~ However, this set is not unique and the partition could
model entered as evidence in the Mod node. at change with different representatives.



From each class in the partition, the previously pickedh? & <a§,o§+1>. We may implement this procedure by
representative is retained and all other models are pruneéntering as evidencés action in the chance nodd, of the
The representatives are distinguished in that all modeatsin  DBN mentioned previously and sampling from the inferred
group aree-SE with it. Unlike exact SE¢-SE relation is not  distribution over the chance nod@f“.
necessarily transitive. Consequently, we may not arfliyrar  gjnajly, we note that in computing the distribution over
select a model from each class asAthe representative singe, paths, solution to agerits I-DID is needed as well
others may not be-SE with it. Let M; be the largest set (Pr(at|OPT(mt,)) term in Eq. 1). As we wish to avoid
of behaviorally distinct models. Then, the following halds s we assurrl{e a uniform distribution ovés actions.

Proposition 3 (Cardinality): Thee-SE approach results in - jowever, this may change the set of SE models. Specifically,
at most| M, models after pruning. _ this does not affect the set of behaviorally equivalent nmde
Intuitively, the Prop. follows from the fact that in the wors ¢ 5 different set of models gfmay now be observationally
case,e = 0, resulting in subjectively distinct models. This equivalent. Nevertheless, a uniform distribution miniesiz
set is no larger than the set of behaviorally distinct madelsgny change as models that are now observationally equiva-

1 lent would continue to remain so for any other distribution
ﬁs °‘i’z °'T TT °'|15 T °'|°5 °‘|1 °ﬁ3 Prlhe) over i's actions. This is because given a model jofa

uniform distribution for; induces a distribution that includes

0- ) i 1] the largest set of paths in its support.
] V. ALGORITHM
L 5 Bl e We present the algorithm for partitioning the models in
0.5 e the model node of the I-DID at each time step according to
- : [ e-SE, in Fig. 6. The procedure;-SubjectiveEquivalence

Figure 5. lllustration of iterative e-SE model grouping using replaces the procedur&ehaviorEq, in the algorithm in

the multiagent tiger problem. Black vertical lines denote beliefsFig- 4. The procedure takes as input, the sej'®imodels,
contained in different models of included in the initial model M, agenti’s DID, m;, current time step and horizon, and

node, M, ,. Decimals on top indicaté's probability distribution  the approximation parametetr, The algorithm begins by
over j's models. We pick a representative model (red line) and - he distributi ’ he f hs 66 h
group models-SE with it. Unlike exact SE, models in a different COMputing the distribution over the future paths ¢or eac

behavioral (shaded) region also get grouped. Of the remainingnodel of j. If the time step is not the initial one, the prior

models, another is selected as representatigalistribution over ction-observation history is first sampled. We may compute

the representatives is obtained by summing probabilities assigne C . .

to individual models in each class. the distribution by transforming the I-DID into a DBN as
mentioned in Section Il and entering the model jofas

Transfer of probability mass Recall that agent's belief evidence — this implements Egs. 1 and 2.

assigns some probability mass to each model in the mod?b We then pick a representative model at random, and using

node. A consequence of pruning some of the models is tha e cached distributions group models whose distributions
: exhibit a divergence less thanfrom the distribution of the

the mass assigned to the models would be lost. Disregardin . .
) - . : presentative model. We iterate over models left ungrdupe
this probability mass may introduce further error in the . ) . X .
until none remain. Each iteration results in a new class

optimality of the solution. We avoid this error by transfeg . . . ' :
- . of models including a representative. In the final selection
the probability mass over the pruned models in each class

to the e-SE representative that is retained in the model nodé hase, all m0d8|3 exc_gpt the representative are pruned from
(see Fig. 5). each class in the partition. The set of representative rspdel

which aree-subjectively distinct, are returned.
Sampling actions and observations Recall that the pre-

dictive distribution overi’s future action-observation paths, ~ VI. COMPUTATIONAL SAVINGS AND ERRORBOUND
Pr(Hp_|ht, ml-_,l,mil_l), is conditioned on the history  As with previous approaches, the primary complexity of
of i's observations,h’, as well. For a time-extended I- solving I-DIDs is due to the large number of models that
DID, because the model grouping is performed at everynust be solved ovefl’ time steps. At time step, there
subsequent time step at which we do not know the actuatould be\M?\(|A]—||Qj|)t models of the other agepif where
history, we obtain a likelyr! by samplingi’s actions and |M?| is the number of models considered initially. Nested
observations for subsequent time steps in I-DID. modeling further contributes to the complexity since solut
Beginning with the first time step, we pick an actia, of each model at level — 1 requires solving the lower
at random assuming that each action is equally likely. Anlevel [ — 2 models, and so on recursively up to level 0. In
observation is then sampled from the distribution givlsn an N+1 agent setting, if the number of models considered
sampled action and belief;*! ~ Pr(Q;|al,b,). We utilize  at each level for an agent is bound hyt|, then solving
this sampled action and observation pair as the historyan I-DID at levell requires the solutions o ((N|M|))



€-SUBJECTIVE EQUIVALENCE (Model setM;;, DID m;, current  the vector of expected rewards for ageéngiven its belief

time steptt, horizonT, ¢) retums Mj; . when each path it is followed. Here,T is the I-DID’s
1. Transform DIDm; into DBN by replacingi’s decision nodes horizon. The expected value foris:

with chance nodes having uniform distribution

;23 ForStaT:r?gl]ej-ﬁtit;g?Aﬁ) EV; = Pr(Hr|mii,mji-1) - po, ,(Hr)

4.  Entera; as evidence into chance nodé;, of DBN wherem,;;_, is the model ofj.

5. Sampleo/™ ~ Pr(O/™") If the above model ofj is pruned in the Mod node, let
6. h'< (a0l model 7 ;_, be the representative that replaces it. Then
7. For eachmj in M, do bi1 is i's belief in which modeln;, ; is replaced with the

8. Compute the distribution?[k] < Pr(Hr—_:|h', m;,mk), representative. Expected value forE'V;, is:

obtained from the DBN by enterinng as evidence

(Proposition 1) EV; = Pr(Hp|mi,mji—1) - p;, ,(Hr)
Clustering Phase '
9. While M, not empty Then, the effective error bound is:
10. Select a modem;" € M;, at random as representative A
11.  Initialize, M¥ — {m%} A =||EVi = EVilleo = ||Pr(Hr|mii, mji-1) - py,  (Hr)
12. For eachm} in M; do — Pr(Hrlmi, mji—1) - pb, , (Hr)||oo
13. If Dxr(P[E]||P[k]) < € = |[Pr(Hr|mii,mji) - py, ,(Hr)
14, MEEmE My = mb — Pr(Hr|mi, mivi-1) - po , (Hr)
Selection Phase + Pr(Hr|miu,mji-1) - py, , (Hr)

15. For each Mf do

16. Retain the representative mod,@ﬂ; Em
17. Return M

— Pr(Hr|mii, mji-1) - pv, , (Hr)||lo (add zerg
k < ||Pr(Hr|mii,mji—1) 'pﬁi,,l(HT)
] = Pr(Hr|mii,111) -y, (Hr)

+ Pr(Hrlmq, mj1-1) - pv, , (Hr)
Figure 6.  Algorithm for partitioningj’s model space using-SE. This — Pr(Hr|mii,mji-1) - pv, ,(Hr)l|oo Upfu,z' <lpv;, 1)
function replaceehaviorEq() in Fig. 4. < HPBM(HT) — po, , (H1)||oo - [|Pr(Hr|mi, mji—1)
— Pr(Hz|mi,myi-1)|h (Holder’s inequality
< (R — R™M™)T x 2¢ (Pinsker’s inequality

models. As mentioned in Proposition 3SE approximation
reduces the number of models at each level to at most the Matters become more complex when we additionally
size of the minimal set,M?|. In doing so, it solvegM9|  prune models in the subsequent model nodes as well. This
models initially and incurs the complexity of performing is because rather than comparing over distributions given
inference in a DBN for computing the distributions. This each history ofi, we samplei’s action-observation history.
complexity while significant is less than that of solving Hence, additional error incurs due to the sampling.
DIDs. Consequently, we need so_lv_e_ at T“O’*'(N'M Dl.) VIl. EXPERIMENTAL EVALUATION
number of models at each non-initial time step, typically
less, whereM* is the largest of the minimal sets, in We implemented the approach in Figs. 4 and 6 utiliz-
comparison toO((N|M|)!). Here M grows exponentially ing Hugin API fqr DIDs and show results for the well-
over time. GenerallylM| < | M|, resulting in a substantial known two-agentiger problem(|5|=2, [ A;[=[A;|=3, [€2;]=6,
reduction in computation. Reducing the number of modeld$?;/=3) [1], [9] and the multiagent version of the machine
in the model node also reduces the size of the state spac@aintenance (MM) problem|§|=3, |A;[=[A4;[=4, ||=2,
making the upper-level I-DID more memory efficient. 1©2;/=2) [12]. We formulate level 1 I-DIDs of increasing

Given that lower-level models of other agent are solvedime horizons for the problems and solve it approximately
exactly, we analyze the conditional error bound of thisfor varyinge. We show that{i) the quality of the solution
approach? Trivially, if ¢ = 0 there is no optimality error 9enerated using our approaehE) improves as we reduce
in the solution. If we limit the pruning of-SE models to ¢ for given numbers of initial models of the other age,
the initial model node, the error is due to transferring the2nd approaches that of the exact solution. This is indieativ
probability mass of the pruned model to the representative? the flexibility of the approachyii) in comparison to
effectively replacing the pruned model. Our definition of SEthe previous apprqach of updating .mlodels dlsgr|m|nat|vely
provides us with a unique opportunity to bound the erro(PMU) [6], which is the current efficient technique;SE
for i. Observe that the expected value of the I-DID couldis able to obtain larger rewards for an identical number of
be obtained as the expected reward of following each patHitial models. This indicates a more informed clustering a
weighted by the probability of that path. Let, ,(Hy) be ~ Pruning usinge-SE in comparison to DMU, although it is

’ less efficient in doing so.

2Doshi and Zeng [6] show that, in general, it is difficult to fusly bound In Figs. 7 and eflv b), we ShQW the a_‘verage rewarc_is
the error if lower-level models are themselves solved apprasely. gathered by executing the policies obtained from solving
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Figure 7. Performance profile obtained by solving a level 1 I-DID for theltiagent tiger problem using thee-SE approach fo(a)
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and DMU in terms of the rewards obtained given identical numbers ofeladd the initial model node after clustering and pruning.
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Figure 8. Performance profile fomultiagent MM problem by solving level 1 I-DIDs approximately usingSE for (a) 3, and(b) 4
horizon. Reducing results in better quality solutiongc) Significant increase in rewards obtained &8E given identical numbers of
retained models in the initial model node.

level 1 I-DIDs approximately within a simulation of each the impact on:’s history. DMU’s method of measuring
of the two problem domains. Each data point is the averagsimply the closeness of beliefs in models for clustering re-
of 300 runs where the true model ¢fis picked randomly sults in significant models being pruned. However, the trade
according ta’s belief. Notice that as we redueehe policies  off is the increased computational cost in calculating the
tend to converge to the exact (denoted by flat lines) and thidistributions over future paths. To illustrateSE consumed
remains true for different numbers of initial models, asros an average of 23.7 secs in solving a 4 horizon I-DID with
horizons and problem domains. Values of these policie25-100 initial models for the tiger problem and differing
increase ag considers greater numbers of models thereby, on a Xeon 2GHz, 2GB RAM machine. This represents
improving it's chances of modeling correctly.® approximately a two-fold increase compared to DMU. For
Next, we compare the performance of this approach wittthe MM problem, the approach incurred on average 38.1 secs
that of DMU. While both approaches cluster and pruneexhibiting a three-fold increase in time taken compared to
models, DMU does so in the initial model node only, there-DMU to solve a horizon 4 |-DID with 25-100 initial models.
after updating only those models which on update will beOn the other hand, while-SE continues to solve |-DIDs of
behaviorally distinct. Thus, we compare the average resvardS horizons, the exact approach runs out of memory.
obtained by the two approaches when an identical number of
models remain in the initial model node after clustering and VIIl. DiscussioN
selection. This is done by varyingin both approaches until Our results demonstrate flexible solutions of I-DIDs by
the desired number of models are retained. In DMU, model®runing models that are approximately SE. Defining SE by
whose beliefs are withir of a representative are pruned. explicitly focusing on the impact that other agents’ models
This allows comparison between clustering and selectioh@ve on the subject agent allows us to better identify model
techniques of the two methods. From Figs. 7 and)8 Similarity. This translates into solutions of better quali
we observe that-SE results in better quality policies that 9iven a limit on the number of models that could be held in
obtain significantly higher average reward. This indicatesmeémory. Consequently, other approaches would need more
that models pruned by DMU were more valuable than thosdnodels to achieve comparable quality, which could traaslat
pruned bye-SE, thereby testifying to the moneformedway into better efficiencies for our approach. However, we face

in which we compare between models by directly gaugingh€ challenge of computipg dis.tributiqns over a number of
paths that grow exponentially with horizon, which transat

3Note that the error bound of Section VI does not apply hereaimse into ir_]creased time complexity. AI'Fhou_gh the apProaCh i no
we prune models in subsequent time steps as well. yet viable as a scalable approximation technique, we are



optimistic that the technigue may be combined synergisti- APPENDIX

cally with DMU, and this will facilitate application to lagy Proof of Proposition 1: Pr(hy_q|m!,,m%, |) =
multiagent problem domains. Given the informed cIusteringPT(hTitih al, o
and selection, this approach also serves as a benchmark f?fr(hT \ 1|al
other techniques that seek to prune models. Ba

t+1 t t —
t 0ti+1 |mi’l7mg’l_1) t t+1y ot t R
ir 04 7mi,l7mj,l—1)Pr(a‘i>0i |mi,l7mj,l—1)

(using Bayes rule)
We focus on the first term next:

Pr(hT_t_1|a§,0§+1,m§’l,m§7171) = Zag,ozﬁ»l Pr(hpr—¢—1]
¢
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This term is computed recursively. For the second teim,
level [ — 1 actions and observations are independent'sf
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